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Abstract 

A method is presented to deal with the propagation 
of X-rays or neutrons in a statistically distorted crystal 
in the general case where both short-range and long- 
range order are present: it is the generalization of a 
theory presented in a previous paper [Becker & A1 
Haddad (1990). Acta Cryst. A46, 123-129]. The main 
difference from Kato's formulation is concerned with 
the correlation length F of the incoherent part of the 
beams [Kato (1980). Acta Cryst. A36, 763-769, 770- 
778; A1 Haddad & Becker (1988). Acta Cryst. A44, 
262-270; Becker & Al Haddad (1990)]. The present 
formulation shows that F is variable within the 
sample under study, and is of the same order of 
magnitude as the correlation length 7- of the phase 
factor [exp (27rih • u) where u is the distortion field]. 
This is the main difference from Kato's approach 
where F was considered as >>z. A detailed solution 
of the propagation equations is proposed and is 
applied to the case of silicon crystals containing a 
variable amount of oxygen, using measurements by 
Schneider, Gon~alves, Rollason, Bonse, Lauer & 
Zulehner [ Nucl. Instrum. Methods Phys. Res. (1988), 
B29, 661-674] using T-ray diffraction. The present 
theory is in fair agreement with the observed 
intensities, although Kato's original proposition does 
not work. 

I. Introduction 

The present authors discussed the statistical basis of 
dynamical diffraction by a randomly distorted crystal 
in a previous paper (Becker & AI Haddad, 1989; see 
also Guigay, 1989). Statistical theory was first intro- 
duced by Kato (1976, 1980) who proposed propaga- 
tion equations for the intensities of the incident and 
diffracted beams derived from Takagi's equations. 
The object of the present paper is to improve Kato's 
approach by using a self-consistent theory. 

Crystals are distorted by various causes, such as 
interstitial atoms etc. The distortion field is denoted 
as {u(r)} indicating that an atom at r is displaced over 
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a distance u. Let ¢ be the phase factor 

= exp (2~rihu). (1) 

If 

<~>=E (2) 

the fluctuation 8¢ of the phase is defined through the 
equation 

~o = (~o)+ 8~o. (3) 

E is the long-range order parameter (static Debye- 
Waller factor). Phase correlation is introduced by 

(~o*(r+ t)q~(r)) = E2+ (Sq~*(r + t)Sq~(r)) 

= E 2 + ( 1 - E 2 ) g ( t ) ,  (4) 

g(t) being the pair-correlation function of the phase 
factor. 

The justification for using ensemble averages was 
fully discussed in the paper by Becker & A1 Haddad 
(1990), hereafter referred to as (I). 

Two correlation lengths are needed: 
o o  

~" = I g(t) dt 
o (5) 

o o  

"r2 = ~ g2( t) dt. 
0 

~" represents the distance over which two optical 
routes lose their mutual phase coherence. ~'2 has a 
similar meaning and plays a significant role in the 
theory. 

As discussed in detail by Becker & A1 Haddad 
(1989), if one assumes that the correlation length is 
smaller than the average distance between centres of 
scattering (of the order of A), one obtains an 
exponential law for the correlation function: 

g ( t ) = e x p ( - x / ~ - )  

then, for x, y > 0 

g(x , y )~ -g (x )g ( y )  
(6) 

g ( x + y ) ~ - g ( x ) g ( y ) .  

Takagi's equations are written in the form 

8Do/OSo = ixg~Dh 
(7) 

CgDh/OSh = ixq~* Do. 
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Do and Dh are the amplitudes for the incident and 
diffracted beams, propagating in the directions So and 
Sh respectively (Fig. 1), X = 1/A and A is the extinc- 
tion length: 

1 / A = (AaC/V)  F 

where A is the wavelength, a = 10 -12 cm for neutrons, 
a = 0.28 x 10 -12 cm for X-rays, C is the polarization 
factor, V is the volume of the unit cell and F is the 
structure factor. 

It will be assumed that the crystal is centrosym- 
metric and non-absorbing and that its dimension 
l >> "r, A. 

The case of a spherical incident wave (a point 
source, emitting in direction So) of unit intensity will 
be considered in this paper: 

D ° = 8 ( S h ) .  (8) 

Equations (7) can be transformed into 
S0 

Do(So, Sh)= ~(Sh) + ix ~ Dh(~, Sh)(~(~, Sh) dE 
0 

Sh 

Dh(So, Sh)=ix ~ ¢P*(So, rl)Do(so, r/) dr/. 
o 

(9) 

A previous study (Becker & A1 Haddad, 1990) was 
devoted to the special case where E = 0 (no significant 
long-range order). We wish, in the present paper, to 
extend the theory to the case where E can take any 
value between 0 and 1. Notice that E = 1 corresponds 
to the perfect crystal. 

It is convenient, following Kato (1980) to decom- 
pose Do and Dh in the following way: 

Do = (Do) + 6Do 
(10) 

D h = < D h ) + 3 D h  

where (Do) and (Dh) are ensemble averages of the 
wave amplitudes and 6Do, 6Dh are amplitude fluctu- 
ations. According to (10), the intensities are 

Io = (IDol 2) = I( Do)l 2 + (I 8Dol2> 

= I~) + I~  
(11) 

Zn = <lDnl2> = I ( D h )  2 + (10Dn ] 2) 
= I~, + I j , .  

Following familiar concepts in optics, I(Do, h)[ 2 is 
the coherent part of the beam and <[ 6Do.h[ 2) the inco- 
herent part. 

S•• Sh / 20 
S o 

Fig. 1. Incident and diffracted directions. 

E plays the role of a static Debye-Waller factor. 
In analogy with time-dependent fluctuations (vibra- 
tions), we expect the coherent intensities to be propor- 
tional to E 2, the incoherent ones to be proportional 
to (1 - E2). In a perfect crystal, the beams are purely 
coherent (AI Haddad & Becker, 1990). In a mosaic 
crystal [E =0,  see (I)] the beams are totally inco- 
herent. 

II .  T h e  c o h e r e n t  w a v e  

Following the discussion by Kato (1980), we start by 
studying the propagation mechanism for the coherent 
waves. Taking the ensemble average of (7), we get 

O(Do)/OSo= iX(q~Dh) 

= ixE(Dh)+ ix(&pDh). (12) 

Inserting (9) in (12), we get 
S h 

ix(&pDh) = - x 2 E  ~ (6q~(So, &,)Do(so, "17)) drl 
o 

S h 

- X  2 ~ <Do(so, 71) 
o 

X3¢(So, Sh)6¢*(So, r/)) dr/. (13) 

The value of Do(so, 71) is determined through the 
scattering events at preceding positions (~, r/) on the 
optical route: only-nearest neighbour phase correla- 
tion is considered, which means that phase coherence 
is assumed to be lost beyond neighbouring scattering 
points along an optical route. This approximation 
allows for neglecting the first term in (13), since 
Do(so, 77) is built from scattering events occurring at 
points that are not nearest neighbours of (So, Sh). 

We then assume (Do) and (Dh) to  have negligible 
variations in a distance z, which allows for the follow- 
ing simplification: 

ix(&pDh) = -X2(1 - E2)r(Do). (14) 

We get the propagation equations for the coherent 
waves in the form 

O(Do)/OSo = i x E ( D h ) -  X2(1 - E2) r (Do)  
(15) 

a( Dh)/  aSh = ixE ( Do)-  X2(1 - E2)'r( Dh). 

These statistical equations differ from the original 
Takagi's equations in two effects. In the first place, 
2( is replaced by xE: the effective extinction length 
becomes A~ E, the structure factor being damped by 
E. In the second place, an effective absorption factor 
[2X2(1-E2)r]  occurs for the propagation of the 
coherent intensities. Energy is lost by the coherent 
component of the beam during its propagation 
through the crystal: this lost energy will appear in 
the form of incoherent beams (Fig. 2). This is the 
basic mechanism of conversion between coherent and 
incoherent intensities. At the entrance to the sample, 
the beam is essentially coherent and through the 



imperfect phase correlation at various points where 
scattering occurs, the incoherent beam is gradually 
created. 

The condition of validity of (14) and then (15) is 

r<< A/E.  (16) 

The smaller E is, the less stringent this condition is. 
It should be noticed that the lengthening of the 

effective extinction length (A /E) ,  which results from 
the statistical hypotheses introduced earlier, is 
opposite to what occurs in strained or bent crystals, 
where the effective extinction length shortens. 

To get an explicit solution to (15), boundary condi- 
tions have to be discussed for (Do) and (Dh). 
Equations (15) are only valid for So, Sh >> r. Let us 
consider a distance e such that r < e << So, Sh. 

The amplitude of the coherent beam at (So, 0) is 
weakened by scattering events that have taken place 
before [at positions (¢, 0) with ~:< So]. The effective 
incident amplitude (D O ) thus obeys the equation 

O(D°)/Oso = -X:(1 - E 2)z(D°), 

the solution of which is 

(D°)=8(sh)exp[-xz(1-E2)rSo].  (17) 

(Dh(So, e)) is such that 

O(Oh)/OS h = ixE(D °) 

so that, after a single scattering, 

(Dh(So,  E ) ) =  i xE  exp [-X:(1 - E2)'rSo] i 3 ( ' 0 )  drl 
o 

=ixE exp[-xz(1-EZ)rso].  (18) 

We can thus adopt the following boundary values 
for (15): 

(Do(O, Sh)) = 0 

(Dh(so, 0))= ixE exp [-X2(1 - E2)rSo] 
(19) 

s 

where only the part of the incident beam which is 
involved in the scattering is considered. Let us define 

tZe= 2X2(1- EZ)"r (20) 

as an effective absorption coefficient. The solution is 
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Fig. 2. Two possibilities for decay of coherence by a scattering 
process at m t or m2. 

(Becker, 1977; Kato, 1980) 

(Dh)= ixEJo[2XR(SoSh) 1/2] exp [-½/xe(So+ Sh)] 

(Do)= ixE(so/Sh) '/z (21) 

X J ,[2xE (SoSh)l/2] exp [ -  ½/xe (So + Sh) ]. 

Jo and J1 are ordinary Bessel functions. 
The oscillatory nature of the coherent amplitudes 

is maintained, A being replaced by A/E,  and the 
beam being damped by the absorption /Ze. 

Finally, we notice that 

OI;/OSo+OI~h/OSh =--~e[l~)n t- I~]. (22) 

This equation gives the rate at which incoherent 
energy is created from the coherent beam. 

III. The incoherent intensity. Kato's approximation 

By subtracting aI~/OSo and aI~/OSh from OIo/OSo and 
alh/aSh respectively, one gets the basic propagation 
equations for the incoherent intensities I~ and I~," 

0 I~/OSo = tzeI~ + ixE {(6D* 6Dh)- (6Do6D*)} 

+ ix{(D* 6q~Dh)-(Do6q~* Dh*)} 
= c • (23) 

OI~/OSh l~elh + ixE{(TDo6D*)-(3Do6Dh)} 

+ ix{(Do&p* D*) -(D*o &pDh)}. 

Insertion of (9) into the brackets allows the 
introduction of phase and amplitude correlations by 
a method similar to that used in (I). For instance, 

ixE(SV*SVh) 
S 0 

=X 2E I d~(D*(~:, Sh)q~*(~:, Sh)8Dh(So, Sh)) 
o 

s h 
- X  2E I drl(SD*o(So, Sh)q~*(So, rl)Do(so, rl)). 

o (24) 

Limiting the expansion to second order in X and 
defining the transverse amplitude correlation func- 
tions 

$h 

A(so, Sh)= I dr/(SDo*(So, Sh)SDo(So, rl)) 
o 
So (25) 

B(so, Sh)= I d ~ : ( S O * ( s o ,  Sh)8Dh(~ , Sh) ) 
o 

we get 

ixE {(SD* 8Dh)-(  SDoSD*)} 

= 2 x 2 E 2 [ B  - A ]  

i .............. 1 + " i 
(26) 
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The meaning of the diagrams is the same as in (I), 
an optical route represented by a full line corresponds 
to the evolution of Do o r  D h. An optical route rep- 
resented by a dotted line corresponds to the evolution 
of Do* or Dh* where m: (q~); D: (q~*). For simplicity, 
we assume A and B to be real. (~-*) stands for ampli- 
tude correlation between the two routes. 

Then, we consider a quantity such as 
s0 

ix(DO*6~Dh)=X 2 I d~(Dh*(~, Sh)Dh(So, Sh) 
0 

x 8~O(So, s~),p*(~, sh)) 
$h 

- X  2 I d~7(D*o(So, Sh)Do(so, "1"1) 
0 

x 8~O(So, Sh)~O*(So, 7)). (27) 

If the expansion is again limited to second order in X: 

$o 
ix(D*oS~ODh)= X2(1 -  E 2) ~ d~:g(so- s e) 

0 

x (D*(~, Sh)Dh(So, Sh) ) 
$h 

- X 2 ( 1 - E 2 )  I dng(sh--~7) 
0 

x (DO*(So, Sh)Oo(so, 7)) 

-- X2(1 - g E ) r [  I~, - I ; 1  

+ x E ( 1 - E E ) [ B ' - A  '] (28) 

where A' and B' are mixed phase and amplitude 
correlation functions [already defined in (I)]" 

$h 
A'(so, Sh) = ~ dr/g(Sh-- r/) 

0 

x (SDo*(So, Sh)SDo(so, 77)) 
so (29) 

B'(so, Sh) = I d~:g(so- ~:) 
0 

x (6m*(so, Sh)Smh(~, Sh)). 

Thus, it is possible to write 

IxeI ~ + ix { ( DO* 3~O Dh ) - ( Do&p * D*h ) } 

= [£elCh + 2,,1(2( 1 -- E 2 ) [  n ' -  A ' ]  

. . . . . . . . . . . .  

- tzeI~h + 2X z 2X z (30) 

mt 

• stands for 8q~ at a point where scattering occurs, 

and o for 6~0". ~ has the meaning of a phase 

correlation among two routes, as already discussed 
in (I). 

If we consider the conversion from coherent beams 
into incoherent intensity, we observe that incoherence 
can only occur through a partial phase coupling 

between two different paths. From (30) we see that 
the first diagram is compatible with such a process. 
But this is not true for the second diagram where the 
correlation involves two points on the same optical 
path. The diagrams show clearly the intensity at 
(So, Sh) as resulting from the coupled amplitudes at 
preceding positions, along either the incident or 
diffracted direction. 

Summing up the previous results, one gets 

OI~/OSo= tzeI~h + 2 x 2 E E [ B - A ]  

+ 2X2(1 - E2)[ B ' -  A'] 
(31) 

OI~h/OSo = tzeI~ + 2x2EE[A - B] 

+ 2X2(1- E2)[A ' -  B'] 

I~, is the source for I~, I~ the source for I~. We also 
observe that (31) reduces to (I.20) when E-~0. 

Kato ' s approximation 

Kato (1980) made the following intuitive sim- 
plification. He defined F as the common width of 
(~Do*(So, Sh)t~Do(So,  r l ))  and (t~D*(so, Sh)O'Dh(~,  Sh) ). 
F was supposed to be constant. Assuming F << So, Sh, 
one gets 

A(so, Sh) i -- -rio(so, Sh) 
(32) 

B(so, Sh)--~ Fib(So,  Sh). 

In principle, F should be derivable from the theory, 
but Kato proposed an order of magnitude: 

F - - A / E  (33) 

and thus 

F >> r. (34) 

This last inequality leads to the following sim- 
plification for A' and B' [already discussed in (I)]. 

m , ( s o ,  Sh ) i ~-- rio(So, Sh) 
(35) 

B'(so, Sh)~-- rI~(So, Sh). 

If the effective correlation length re is defined by 

r e = ( 1 - E 2 ) r +  E2F (36) 

the propagation equations reduce to 

(37) 
Oiih/ OSh = txelo+ 2X2%[ __ ih] 

A solution can be obtained to these equations 
(Kato, 1980). The present authors proposed some 
improvements to the solution (A1 Haddad & Becker, 
1988; Guigay, 1989). Though mathematically com- 
plex, it is feasible to use such a theory for refining 
extinction as long as E and re are modelled in terms 
of their h dependence (Becker & A1 Haddad, 1989). 

Despite its simplicity, Kato's approximation seems 
questionable. This point was the object of (I) in the 
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Table 1. Expansion of X in terms of independent 
scattering schemes; X = Y. x~-Y~ x'~ 

+ IL . . . . .  171 

¶ 

" ' i  . . . . . . . . . . . . .  "13 

* X 2 

... . . . . .  l:l 

"1 

1 

+ X 4 + X 5 

"'i" ..... 0 ... . . .  1:1 

X 3 X' 5 

. . . . . . . .  El 

t- -..' 

[_ .1 /  

case where E is very small. We were able to show 
that, for E << 1, 

A ' =  T2I~, B ' =  r2I~. (I.32) 

This modification from (35) means that (33) is not 
valid for small E. We can infer from (I.32) that, for 
small E, F is of the order of ~-. 

Furthermore, it is not obvious that F should be a 
constant, or be the same for A and B. 

These questions are related to the practical difficul- 
ties encountered when trying to use (37) and its 
solution on experimental data. It is for these reasons 
that the theory will be extended further, by an 
expansion of OI~o/Oso and OI~/OS h of equations (23) 
to fourth order in X, in order to find self-consistent 
equations satisfied by A, B, A', B'. 

IV. Improved theory for the incoherent intensities 

The expansion of Ol~o/Oso (or Olih/OSh) t o  fourth order 
in X can be represented by the diagrams shown in 
Tables 1 and 2: 

OI~/Oso= 2x4[X + Y]+  tZeICh. (38) 

Some of these terms represent conversion of coher- 
ent into incoherent intensity at points preceding the 
actual position (So, Sh). Since a coherent beam can 
only become incoherent by phase coupling between 
two different paths, the only diagrams that correspond 

Table 2. Expansion of Y in terms of independent 
scattering schemes; Y = Y~ (Yi - Y'i) 

x.i 

i ..... 
Y'I 

Y2 

Y'2 

Y4 

Y3 

Y 
3 

Y'4 

Y5 Y5 

Y6 Y6 

to this coherent-incoherent conversion are x6, X ~ ,  

Y6,  Y~. 
The detailed calculation of X is presented in the 

Appendix, the result being the following: 

E 2 [ B - A ] = x E X  (39) 

with 

X-2{B-A}  

S 0 S h 

= 2 E  2 j dE ~ d r / [ A -  B](~¢, T/) 
0 0 

+2(l-E2)r d~A(~,Sh)--I dnB(so, n) 
0 

+ 2 ( 1 -  E~)T dr;A'(so, r l ) - I  d~: B'(~:, sh) 
0 

sh 
SO 1 +2(I-E2)~ ~ dn/~(So, n)-~ d~X~(~, sh) 

0 0 

(40) 
A similar calculation for Y (Appendix) leads to 

( 1 - E 2 ) [ B ' - A ' ] = x 2 Y  (41) 
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with 
S O 

x - a { B ' - A ' } = 2 E 2 7 .  [. d ~ [ A - B ] ( ~ , S h )  
0 

$h 

+ 2EZT. I d r / [ A -  B](so, r/) 
0 

s 0 

+ 2 ( 1 -  E2)7.2 I dE ( m ' -  B')(~, Sh) 
0 

Sh 

+ 2 ( 1 -  E2)7.2 J" d r / (A ' -B ' ) (So ,  "17) 
0 

+ 2(1 - E2) 7.7.2 

x {!' dr/l~(so, 
• 0 } 

r / ) -  ~ dE I;(~:, Sh) • 
0 

(42) 

V. Modified propagation equations for the 
incoherent beams 

Equations (31), (40), (42) are in fact very difficult to 
solve directly. Some simplifications are needed in 
order to get practical propagation equations for the 
incoherent intensities. 

Insertion of (31) into (42) allows one to write 

B ' -  A' = 7.2[ I~ - I~o] + 2X 2 E2(7.- 7.2) 

x { ? ° [ A - B ] ( , , S h ) d ,  

" } 
+ j" [ A -  B](so, r/) dr/ . (43) 

0 

Similarly, (40) can be transformed into 

( B - A )  = £ [ A - B ] + r [ I ~ - I ~ ]  

$0 

+2X2(1-E2)7.  ~ (A-A ' ) (~ ,  Sh)d~ 
0 

$h 

+ 2X2(1-  E2)7. ~ ( B -  U')(So, r/) dr/ 
0 

s 0 

+ 2X 2E27. I ( A -  B)(~:, Sh) dE 
0 

Sh 

+2x2E27. I ( A - B ) ( s o ,  r/) dr/ (44) 
0 

where /2 stands for the propagator operator: 
S 0 S 0 

£f(So, Sh)=2x2E 2 ~ d~: ~ dr/f(~, r/). (45) 
0 0 

If A and B are assumed to have slow variations on 
a distance such as A, the last two integrals in (44) 
can be neglected with respect to L [ A - B ] .  

If E2/(1 - E 2) is larger than 1, its seems also tempt- 
ing to discard the two integrals involving ( A - A ' )  
and ( B -  B'). 

Under such drastic simplifications, (44) becomes 

' I~). (46) [ l + £]( B - a ) = 7.( I h 

It can be inverted into 

B - a  = 7-[1 + £ ] - l ( i~ , -  I~). (47) 

From (31), the two integrals of (43) can also be 
neglected in the expansion of alo/OSo or 01h/OSh. 

Finally, one can write the following propagation 
equations for the incoherent intensities 

0 I6/Oso = 2X2(1 - E 2) I ,~, + 2X2{ E27.[1 + £] - '  

+(1-E2)7.2}(I  'h- 16) 

Ol~/OSh=2X2( l_E2) i ;+2x2{E2r[ l+f_ ,]_ l  (48) 
i + ( 1 -  e2)7.2}(t~- 1h). 

If we define the operator 

"~e = E2/~ + ( 1 -  E2)7.2, (49) 

tl A 
f" 7 . ( 1 + £ ) - 1 = 7 . ~ ( - 1 )  L ,  (50) 

0 

aI~/aSo 2x2(1-E2)I~, 2,, , = + 2X 7.~[ I h -  16] 
(51) 

O I~,/OSh = 2X2(1 - E2)I;  + 2X2"2e[ l~o -- Ih]: 

Equations (51) are a^ generalization of Kato's 
equations (37), where F is an operator and not a 
constant any more. Equation (50) can be written as 

P = F o + P  l (52) 

with Fo = r and 

/~ '= ~ (-1)"r£".  (53) 
n = l  

Since the series is alternate, we may expect that Fo 
is an important part of F, F '  corresponding to fluctu- 
ations around Fo, and its value is drastically different 
from (ALE) ,  the expression proposed by Kato. The 
natural boundary values associated with (51) are 
(generalizing the argument proposed by Kato 

I ; = 0  

I~(so, 0)"- X2(1 - E 2) (54) 

x exp {-2x2[E2r + (1 - E2) r2]So}. 

It should be noticed that when E 3 0  equations 
(51) have the proper limit, identical to the propaga- 
tion equations derived in (I). Therefore, (51) might 
have a reasonable behaviour for the whole range of 
E values. 

Remark 1. Equations (51) are difficult to solve 
directly, since ( I i , - I ~ )  occur through an integro- 
differential equation. 

The crudest but simplest method of solution con- 
sists in neglecting the fluctuating part of F and writing 

/~-~ 7.. (55) 
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In such a condition, the problem is equivalent to 
the theory proposed by Kato (1980) and modified by 
A1 Haddad & Becker (1988), with the only 
modification concerning F. 

Remark  2. If one wishes to go beyond the approxi- 
mation (55), we propose the following alternate pro- 
cedure. Let us go back to (40) for ( B - A )  and its 
various contributions (see Appendix for the 
expressions for the various terms xi). 

So Sh 

x 3 + x 4 = R E 2 ( l - E 2 )  I d ~  ~ d n  A ( ~ ,  r/ )g(  Sh -- r/ ). 
0 0 

Finally, the propagation equations take the alterna- 
tive form 

Ol~/Oso = 2X2(1 - E2)rI~h + 2 x 2 E 2 [ 1  + £ ] - ' F  

i - lio] + 2X2(1 -- E2),r2[lh 
(59) 

OI~,/OSh = 2t'2(1 -- EZ)r l ;  - 2X 2E2[1 + £ ] - ' F  

+ 2X2(1 - E2)-r2[ I ~ -  I~,]. 

The solution to (59) should not be very different 
from that to (51). 

If ~" << So, Sh, we may write 

r X~<< t X3-~ X4 << X 1 X3"1 t- X ! . 

In any case, 

(X 3 -31- X 4 )  / X 2  "-~'~ ( 1  - f 2)'r/ E2T. 

If this ratio is not large compared to 1, which means 
that E is not too small, it is legitimate to neglect x3 
and x4 in addition to x2 and, similarly, the term (in x6) 

S h 

2E2( 1 -  E2) r I dr/A'(so, r/) 
0 

S O S h 

- ~ 2 E 2 ( l - E 2 )  I d~ I d r / g ( s o - ~ ) A ' ( ~ ,  r/) 
o o 

S 0 S h 

< 2 E 2 ( 1 - E 2 )  I d~ I d r / g ( s o - ~ ) A ( ~ ,  r/) 
o o 

<< X 1 . 

With these simplifications, we get 

[ B - A ]  = £ [ A -  B ] +  2X2(1- E2)"F  2 

so l x dr / I ; ( so ,  r / ) -  I ds c I~(,~, Sh) • 
0 

(56) 

If F is the source function, 

F = 2X2(1 - -  E 2 ) ' r  2 

x dr/ / ;(So,  77)- I d~ I~(~, Sh) , (57) 
0 

uniquely defined by the coherent beam, (56) can be 
written as 

[ I + £ ] ( B - A ) = F ,  (58) 

the solution of which is 

( B - A ) = [ I + £ ] - ' F  

= ~ (-1)"£"(F) 
rl=O 

where now ( B - A )  is calculable from the coherent 
intensities. 

VI. Solution for the incoherent part of the beam 

The purpose of this section is to find the solution to 
(59), together with the boundary conditions (54). 
Equations (59) can be written as 

OI~/Oso = 0-(1 - E2)I'h ~ +/-/,2(I~, -- I~) 
(6o) 

0 I~,/OSh = or(l-- E z) I ;  c +/x2( I ~ -  I~,) 

where 

o- = 2X2r, tx2 = 2X2(1 - E e ) ' r 2 ,  (61) 

I6 c and I~, ~ are the effective sources for the incoherent 
beams and are given by 

o-(1 - E2)I6 ~= or(1 - E2)I~ - 2xZE2[1 + £ ] - ' F  

c r ( l _  EZ)i ,h~=cr( l_  E2)i~h + 2xZEZ[l + £ ] _ , F  " (62) 

By the use of (45), (56) and (57), (62) can be 
transformed into 

I ' o ~ = I ~ - a 2 r f , .  I ; + a 2 r f 2 *  I~ 
(63) 

I 'oC=l~-azTf2  • I~,+ o~2rf, * I~ 

in which * stands for the convolution product 
S 0 S h 

f *  g =  I d~ I dr/f(~, r / )g(so-~,  Sh--r/), 
o o 

a is defined by 

a 2 _.= 2 x 2 E  2 

and 

f l = 6(So) - a(  Sh/ So)1/2 j l [  2ol( SoSh ) 1/2] 

f2 = 6( Sh ) -- a (So~ Sh )1/2 j , [  2a(SoSh ),/2]. 
(64) 

x (g0- o-,g3) ] (65) 
I~)= ( 1 -  E2)[ o'g2 * I'oC + crgo * Irhe + x2 g3] 

Equations (60) are similar to (37), except for the 
change of some constants and the replacement of I;.h 
by I'o~h. Their solution has been discussed by Kato 
(1980) and A1 Haddad & Becker, (1988, § II.4). By 
the same technique, one gets 

I~h = (1-- EZ)[ crg, * I'oC + O-go • lthC + ( x2 /  ~2) 
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where 

with 

go = tX2Do[ 21a,2( SoSt' ) 1/ 2] exp [-/z2(So + st')] 

g, = { 6(So) +/x2(st'/So) '/2111[ 2/x2(SoSt' ) l/z]} 

x exp [ -~2(So+ Sh)] 

g2 = { 6(St, ) + tXz( So/ St' ) 1/2D1 [ 2/XE(S0St' ) 1/2]} 

X exp [--/Xz(So+ st')] 

g3 = {exp [-/z3(So + Sh)]6(St')} * go 
oo 

= E ( - 0 " d ~ 2 ) " [ ( S o S t ' ) l / ~ ]  "+l 
n = 0  

Xll,+l[2lx2(SoSt') 1/2] exp [-/z2(So+ Sh)] 

(66) 

0"  1 = /L/, 3 - - / U ,  2 

a3 = 2X2[(1 - E 2 ) ~  + E2r] ,  

0o, 01 are modified Bessel/ 'unctions. 
Remark. If 0"1 = 0, g3 becomes 

g3 = (So~ Sh ) l/2B1 [ 2/Z2(SoSt' )1/2] exp [-- tz2( So + Sh ) ]. 

From (63) the incoherent intensities are finally 
written as 

I~=  (1 - E2){0"[(1 + a 2r//x2)go 

-(a3~'/tx2)go* fo] * I~ 

+0"[g2-7"a2g2* f2+ra2go*  f2] * I~ +x2g3} 
(67) 

I~ = (1 - E2){o'[gl-'roe2g I * f l  + rot2go * f l ]  * I~ 

+ 0-[ ( 1 + ot2~'//x2)go- (a  3r/P,2) go * fo] * I~, 

+ (X2/P,2)[go- 0"1g3]} 

where 

fo = aJo[ Za( SoSh ) l/2]. 

Like A1 Haddad & Becker (1988), one finds that 
I~, contains a purely incoherent part: 

i~o= (1 - EE)(x2//x2)[go-/z2g3] 

The part 

I~ °°= (1 - E2)(X2/Ix2)go 

= (1 - E2)X2Do[2 (sosh)l/2] exp [-/z2(So + Sh) ] 

becomes the leading contribution in the limit E--> 0. 
It corresponds to pure secondary extinction. 

The other terms are the 'mixed components '  corres- 
ponding to the fact that incoherence is generated from 
the coherent beams, through incomplete phase corre- 
lation, at various depths in the sample. 

VII. Integrated intensity for a parallel plate in 
symmetrical transmission geometry 

If  one writes 
5 

It' It' + I~, I~ I~°+ E "° = c = Ih  , (68) 
n = l  

I~ and I~ ° are the purely coherent and incoherent 
contributions and the five other terms correspond to 
the mixed contributions 

I~ ~ -- 0"(1 - E2)g~ • I~ 

I~2 = 0-(1 - E2)[1 + (c~2~'//z2)]go * I~, 

I~ a = -~-c~ 20-(1 - E2)[g, • f l ]  * I~ (69) 
i,4 Ih = 0-(1 -- E2)ra2[g 0 * fo]I~ 

~ c I~ s - (~ 'aa/ /z2)0-(1-E2)[go fo]lh. 

The integrated power (Kato, 1976; Becket, 1977; A1 
Haddad & Becker, 1988) can be decomposed as 

p = pc + pi 

p i  = p i ,  O + M (70) 

5 

M = Z M , .  
I = 1  

M, is the integrated intensity corresponding to I~ s. 

VII-1. Calculation o f  P c and pi.O 

For a parallel plate in symmetrical Laue geometry 
Pc and pi, O have been calculated by Kato (1980), but 
% has to be replaced by r2. The result is 

P¢ = E 2 Q T W ( 2 E T /  A ) exp [ -2(1  - E2)rT /  A 2] 

p,.OO = ( A QA / 2 r2) 
(71a) 

× sinh [2(1 - E2)(r2/A )( T~ A )] 

x exp [ -2(1  - E2)r2T/A2],  

with T = t /cos 0, t being the thickness of  the plate. 

Q = (A/sin 2O)lxl 2 

and the function W(x)  is given by 

1 

W ( x ) =  [. Jo(xp) dp. (72) 
o 

p~,OO is the integrated intensity corresponding to I~, °°. 
In order to obtain (71), one first integrates the 

intensity on the portion of the exit surface excited by 
the point source S (region ab in Fig. 3), then one 
sums over the various possible source points S. 

In the same way, one can obtain 

pi.O = pi,00 + (1 - E2)[ Q0-,/~U,3 (/ if ,  2 - -  0-1)][exp (-/-/.3 T) 

+ (0-1~Ix2) exp (- /z2T) sinh (/z2T) 

- e x p  (- /z2T) cosh (/z2T)]. (71b) 

VII-2. Calculation o f  M 

VII-2(a) Calculation o f  M~ and M2. I~ l and I~; 2 
are convolutions between an incoherent and a coher- 
ent intensity. The coherent part originates from S and 
the incoherent phenomenon grows from an inter- 
mediate position m' in the sample (Fig. 4). 
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To calculate M~ or M2 one first chooses a point  m' 
at a given depth t' and thus integrates the intensity 
over the segment (alb~) associated with m'. Then one 
varies the depth t' of  m' (variables x', t' parallel and 
or thogonal  to the plate are used for m', rather than 
s ¢:' and r/'; notice that  sin 20 ds ~' dr/ '  = dx '  dt ' ) .  Finally, 
it is necessary to vary S along the entrance surface. 
One gets 

M, = o'(1 - E2)E2Q[G1 * Lo]r 

with 

M2= cr(1- EE)E 2 (73) 

x {1 + E2¢/[(1  - E2)r2]}Q[Go * Lh]r 

1 

G,(t)=½t ~ g,(~, t) d~:, i=O, 1,2 

-1 (74) 
I 

E2x2Lo(t)=½t j I~(¢ , t )  d~:, v = 0 ,  h 
- 1  

Therefore,  Go, G~, Lo, th a r e  given by 

Go(t) = exp ( - /z2 t )  sinh (/z2t) 

Gl ( t )  = exp ( - /z2t )  cosh (tx2t) 
(75) 

Lo(t) = t [ 1 -  W(ZxEt)] exp (- /xet)  

Lh( t) = tW(2xEt) exp (- /zet) ,  

t2,e being given by (20). 

VlI -2(b)  Calculation of M3, M 4  and Ms. We 
employ  a method similar to that  used for M~ and ME, 
but  now I}; 3, i.4 i~5 • lh ,  are convolut ion products  
between three functions. One needs two points m' 
and m" (Fig. 5). First one fixes m' and m" and 
integrates the intensity over alb~. Then one varies m'  
along a'b', m" being fixed. One then varies m" along 
a"b", and finally S along the entrance surface. One 
finds 

with 

i. e .  

M3=-ra2crE2(1-E2)Q[G, * F1 * LO]T 

Ma=ra2crE2(1-E2)Q[Go * F~* LO]T (76) 

Ms=-(za3cr/tz2)E~(1- E2)Q[Go * Fo * Lh]T 

1 

Fi(t)=(t/2) J f ( ¢ , t )  d¢, i = 0 , 1 , 2 ,  
-1  

Fo = sin (at), F, = cos (at). (77) 

VII-2(c) Final expressions for M. It is possible, 
using notat ions that  generalize Kato 's  (1980) 
expressions, to write 

M = ½0"(1 - E2)E2Q[4tz2a(Z1 +½Zz)+ yZ3 

-a(2tx2n~+an2)+(l+2tz2a)n3+n4] (78) 

where 

and 

a = 2ra 2/ ( a 2 + 4tz~), 

y = [ a( a2 - 4/z 2) - 2ra 2]/2/z2 - 2 

n 4 

if z2 = ½r, 

(79) 

Z 1 = F 1 * L h 

= (a  2 +/x~)-I({exp ( - / z d )  Jo(2XEt) 

• [/Ze cos (at)+ a sin ( a t ) ] } r  

-tzeT exp (-tZet) W(2xET)) 

Z2= Fo* Lh 

= (a2+/Z2e)-l({exp (-lZet) Jo(2xEt) 

• [/ze sin ( a t ) - a  cos (at)]}r 

+ aT exp (- /zet)  W(2xET)) 

Z3 = exp ( -2tz2t)  * Lh 

=[ T/(2tz2- lZe)][exp (-tzeT) W(2xET) 

- e x p  ( -2 /z2T)  We((2p.2-txe) T, 2xET)] 
1 

We(x,y)=Sexp(-xp)Jo(yp)d p (80) 
o 

T 
Z4 = ~ Lh(t) dt 

o 

-~- ( T~ t2 ,e)[  W e ( - t z e T ,  2 x E T )  

- e x p  (-p.eT) W(2xET)] 

nl = { [ t  exp ( - / z d ) ]  * FlIT 
Of2 2 - 2  2 = + / - / '  e )  [ (12, e - -  O/2) COS ( O~ r )  

+ 2/zea sin ( a T ) -  ( / z~ -  a 2) exp ( - / zeT)  

--#eT(Iz2e + ce 2) exp ( - /xeT)]  

n2={[ t  exp ( - / z d ) ]  * Fo}r 
2,-2~, 2 a2) s i n ( a T )  = (O~2 +/./,e) t t / z e -  

- 2 / zea  cos ( a T )  +2/zea exp ( - / zeT)  

+ aT(,u,~ + a 2) exp ( - / . / , e T ) ]  

n 3 = {exp (-2/z2t)  * [t  exp (--Uet)]}T 
= (2/z2-/ze)-2{exp (-/x2 T) 

+ [(2/z2-/Ze) T -  1 ] exp (- tzeT)} 

1/t~2~- (T/ lze  + 1//z~) exp ( - / zeT) ;  

n3 = ½ T 2 exp ( - tzeT) .  

We present  two examples in Fig. 6, corresponding 
to E = 0.99 and r /A = 0.1 for Fig. 6(a) ,  E = 0.9 and 
r /A = 0.1 for Fig. 6(b). Z = YA is plot ted as a func- 
tion of  A, where A = T/A and Y is the extinction 
factor, equal to (P/Pki,). Z c corresponds to the co- 
herent  contribution,  Z c (E  = 1) to the pure dynamical  
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s 

b m a 

Fig. 3. Geometry for the integration of  pc or p,,O. 

s 

b bl m at a 
> x' 

Fig. 4. Geometry  for the calculation of  m t and m2. 

S 

t" t' 

b bl m al a 

Fig. 5. Geometry  for calculating m 3, m 4, ms. 

1,2" 
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(a) 

4°0 ................... "" 

Z=Y*A 

3,0 
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1.0 Zkin "" ' '""" 

0.0 
0 5 10 15 A 20 

(b) 

Fig. 6. Z =  P/QA plotted as a function of  A =  T/A. (a) E =0.99, 
~'/A = 0.1; (b) E = 0.9, ~'/A = 0.1. ZC: coherent term ( ); Z i :  
incoherent  term ( ); ZC(E = 1): purely dynamical  theory 
( . . . . . .  ); Z~: incoherent term with Kato's  equations ( ........ ). Notice 
that Zki, = A. 

result (perfect crystal), Z '  is the incoherent part 
resulting from the present theory, Z~, the incoherent 
part using Kato's equations (37) with the solution of 
AI Haddad & Becker (1988). The deviation from 
dynamical theory is apparent. But the most important 
observation is the significant modification of the in- 
coherent part, which is larger with the present theory 
than using Kato's equations [Z}, is already 
significantly larger than Kato's original result (A1 
Haddad & Becker, 1988)]. 

It is observed that, even with strong values for E, 
the incoherent contribution dominates when the 
thickness is large enough. For E = 0.9, the crossing 
occurs for T / A  = 2.5. 

This fact is striking and mixed terms are important 
in the crossing region, which shows the importance 
of using this new theory which does not introduce an 
arbitrary separation between secondary and primary 
extinction. 

VIII. Application: annealed Czochralski-grown silicon 
with a high degree of perfection 

Schneider, Gonqalves, Rollason et al. (1988) have 
studied by y-ray diffraction (wavelength of the 
incident radiation A = 0.00392 ~)  various crystals of 
silicon grown by the Czochralski method. They used 
disc shape samples 10 cm in diameter and 1 cm thick. 
The oxygen content varied approximately between 
10 and 30 atoms in 106. Various samples were pre- 
pared, corresponding to different annealing tem- 
perature and duration. For each sample, the 
integrated diffracted power was measured in Laue 
geometry as a function of the effective thickness 
(which was varied by rotating the crystal around the 
reciprocal-lattice vector h under study). 

An example is given in Fig. 7, corresponding to 
h = 220. Pendell6sung oscillations are well resolved, 
indicating the high degree of perfection of the sample. 
However, dynamical theory is unable to reproduce 
the observed intensities, which are about 50% higher 
than predicted for a perfect crystal. 

8" 
P*107 

7" 

+÷ 

,~, :+ + ~ ÷ + 'e,H~ " ÷- 

53 58 63 A 

Fig. 7. Integrated diffracted power for the 220 reflexion of  a silicon 
crystal (from Schneider, Gonqalves, Rollason et al., 1988) con- 
taining 7.7 x 1017 oxygen atoms cm -3, after anneal ing for 70 h 
at 1043 K. Solid line: the result obtained by dynamical  theory 
(perfect crystal). 
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(1) In order to explain the deviation from Pdyn, 
Schneider, Gongalves, Rollason et aL (1988) have 
proposed the following model: one represents the 
diffracted power as the sum of the perfect-crystal 
contribution (which does not depend on the thickness 
for values larger than A) and a term that corresponds 
to the scattering around the SiO2 precipitates formed 
during annealing at 1043K. Therefore, they write 

P = Pdyn -I- CA 
(81) 

Pdyn = PC(E = 1). 

This assumption has been recently confirmed by 
neutron small-angle scattering experiments by 
Messoloras, Schneider, Stewart & Zulehner (1988). 
The constant C is determined by the best fit to the 
observations. 

The validity of the model is estimated via the 
reliability factor R and the goodness of fit, GOF (see 
Schneider, Gonqalves & Graf, 1988): 

R = 1 0 0  X~ ~, i (1"i  /cri ) J (V-99) 

and 

where 

G O F = x Z / ( N - p )  

N 
X~ = Z I P°bs-, - r,~"h'/Cr,°b~'21 • (V-IO0) 

i = 1  

N is the number of observations, pob~ is the observed 
integrated reflecting power, ptih is the calculated 

o b s  integrated reflecting power, oi is the standard devi- 
ation of --iP°bs and P is the number of parameters. For 
the example shown in Fig. 7, the result is 

C = 4.28(2) × 10 -9 

R = 2.3%, GOF = 2.4. 

Fig. 8 shows that (81) leads to a fair representation 
of the experimental results. 

(2) The same data can be analysed using the theory 
developed in the present paper [as well as Kato's 
(1980) original approach]. 

8 
7 

P * I 0  

6 

. _ . , - -  .,., " 
, . , _ , / , - - , - " ' - "  

A 0 10 20 30 40 50 60 

Fig. 8. Diffracted power  for the 220 reflexion o f  Si ( f rom Schneider ,  
Congalves ,  Rol lason et al., 1988). Same  sample  as Fig. 7. Ptheor 
co r re sponds  to equa t ion  (81), with C = 4.28 × l0  -9. Pdin = CA. 

A fit of the equations obtained in §II I  ofthis paper 
to the experimental data provides the following 
values: 

E = 0.998, r / A  = 0.01, 

R =2.19% GOF--  2.3. 

Thus, z / A  is very small, and we may look at the limit 
of the theory when r / A  ~ 0, in which case M becomes 
very small. One obtains the asymptotic formula 

p = p~ + p i ,  O 

= Q T [ E 2 W ( 2 E T / A ) + ( 1 - E 2 ) ] .  (82) 

The results are shown in Fig. 9 and are similar to 
those of Schneider, Convalves, Rollason et aL (1988). 

Finally, it is important to compare the present 
theory with Kato's original expression. In this par- 
ticular case where r /  A ~ O, re -~ EA and differs greatly 
from zero. The diffracted power is given by 

PK = Q[ TE 2 W ( 2 E T /  A ) + [(1 - E2)/2 W] 

x sinh (2EA) exp ( -2EA)] .  (83) 

The best fit without constraint to the experimental 
data leads to E = 0.367, with R = 5% and GOF = 11.8. 
The results is shown in Fig. 10. 

This approximation turns out to be poor. The rea- 
son for its failure is obviously the approximation 
made by Kato concerning the parameter re. 

If no limitations are made on r / A  or E, one can 
find several values of these parameters for which R 

8 
7 

P * 1 0  

6 

0 --'"Z". ~-~'~ 
0 

Pmao, 

i i , , i 

10 20  30  40  50  A 60  

Fig. 9. Diffracted power  for  the 220 reflexion o f  Si ( f rom the 
present  theory) .  E = 0.998, T/A = 0.01. 

o 

P * 1 0 7  

6' F0 

p c  

0 , , | , , ! 

0 10 20 30 40 50 60 A 

Fig. 10. Appl ica t ion  o f  Ka to ' s  theory  to the 220 reflexion o f  Si. 



132 DIFFRACTION BY A RANDOMLY DISTORTED CRYSTAL. II 

and GOF are nearly constant (Schneider, private 
communication). 

IX. Concluding remarks 

In this paper, we have presented a formulation of 
Kato's statistical dynamical theory which bypasses 
the approximations (33)-(35) concerning correlation 
lengths. It turns out that the hypothesis of a constant 
effective correlation length re must be abandoned. 

The resulting modifications to the theory are rather 
complex and lead to the definition of a variable corre- 
lation length, fluctuating around the value F - - r ,  
which is defined by operation (52): this is an impor- 
tant alteration from Kato's original theory. The 
propagation equations for the incoherent intensities 
can be solved in the new scheme. We have presented 
the explicit solution for the diffracted integrated 
power for a parallel plate, with the application to 
annealed Si crystals (Czochralski grown). The present 
application is limited to crystals with a high degree 
of perfection (E close to 1). The theory needs to be 
tested on many examples, but a physical check of the 
significance of the parameters is only possible for 
highly perfect crystals. In a following paper we will 
present a solution that can be used in refinement 
procedures for finite crystals. 

x2 is thus of the order of So ° FA(E', Sh) de' where F is 
the width of the amplitude correlation function. If A 
is assumed to have small variations over the distance 
F, and if F << Sh, X2 turns out to be very small compared 
to x~. It is thus legitimate to neglect x2 and x~. 

Sh SO Sh 

(b) x3= E2( 1 - E  2) ~ dr/I  dE' I dr~' g(Sh--r/) 
0 0 0 

x (6D*o(E', r/')3Do(E', r/)) 

If we use the approximation (Becker & A1 Haddad, 
1989) 

g(Sh--r/')=g(Sh--r/)g(r/--r/') i f r / < r / ' ,  
X 0 

X3 = E2(1-E2)r  ~ dE[A(E, Sh)+A'(~,Sh) ]. (A2) 
0 

By a similar derivation, 

sit rl s 0 

x 4 = E 2 ( 1 - E  2 )  ~ d r / ~  dr~' I d E '  g ( r / - r / ' )  
o o o 

x (3Do(E, Shl6Do(E', r/')> 
s o 

" E 2 ( 1 - E 2 ) r  ~ d~[A(E, Sh)-A'(E, Sh)] 
0 

(A3) 

APPENDIX 

A. Calculation of X 

(a) We can write 
S h S 0 Sit 

x, = E 4 I dr/ j" d~' j" dr/ ' (6D*(E',  r/')6Do(so, r/)) 
0 0 0 

Sh SO Sh 

= E 4 ~ dr/ I de' I dr / ' (6D*(~' ,  r/')3Do(E', r/)) 
0 0 0 

owing to the long correlation of the amplitudes in 
the longitudinal direction [see Appendix of (I)]. 
Integration over r/' leads to 

S 0 S h 

/ I = 2 E  4 J dE J dr/A(E, r/) (A1) 
0 0 

and similiarly 
SO Sh 

0 0 

Let us now consider the term x2" 
s h rl S 0 

X2 = E 4 ~ dr/j" dr/' J" dE' 
0 0 0 

x (6D*(¢', sh)6Do(E', r/')) 
S 0 S h 

= E4 S d~']" dr/' [Sh-- r/'] 
0 0 

× (6D*o(¢', Sh)6Do(¢', r/')>. 

[exact if we assume g(s c) =exp  ( - E / r ) ] .  
As a result 

s o 

x3+x4~-2E2(1-E2)r ~ dEA(E, Sh). 
0 

(A4) 

We consider xs" 

Sb 7/ s O 

xs = E 2 ( 1 -  E 2) ~ dr/J" dr/' j" ds c' g(so-s  c') 
0 0 0 

X <  * ' Do(E, Shl6Oo(E', r/')> 
S h 

-- E2(1-E2)r  ~. dr/ ' [Sh--r/ ' ]  
0 

x (6D*(so, shlSDo(so, '7')) 

"- E2( 1 - E2)~'FA << (x3 + X4)-  

We can then neglect x5 and x~. Owing to this latter 
simplification, all the significant terms contributing 
to X correspond to an expansion of either A or B. 
As a consequence, we can write 

E2[B-A]=x2X.  (A5) 

Obviously, 

Sh 

x] + x~= 2E2(1 - E2)r ~ dr/B(so, r/). 
0 

(A6) 
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(c) Finally we calculate X 6 and x~. 
S h S O S h 

x6--E2(l-E2) I dn I d~' I d~?' g ( n - n ' )  
0 0 0 

x (D*(~', n ' lDo( ( ,  n)> 
s h 

= 2E2( 1 -  E2) rz I I;(so-rl) d'rl 
o (A7) 

s h 

+ 2E2(1 - E2)r J dr /A' (so,  n) 
0 

s o 

x'6=2E2(1-E2) ~r2 I I~,(~, Sh) ds c 
0 

s o 

+ 2 E 2 ( 1 - E 2 ) r  ~ B'(~,Sh) d~. 
0 

In (A7), the contribution from the coherent source 
is apparent. We finally see that 

X-2{B-A} 
S O S h 

= 2E2 I ds c I d r / [ A - B ] ( ~ ,  'r/) 
0 0 

+2(1-E2)~ - d~A(~.sh)-J dnB(so.n) 
0 

+2(1-E2)~ dnA'(so, n)-I d~'B'(e.s,) 
0 

+2(l-E2)r  2 dnI;(~ro.n)-IdeI~(e.s,) . 

0 

(AS) 

B. Calculation of Y 

We shall now proceed in a similar way for Y. From 
Table 2, it is apparent that all diagrams correspond 
to an expansion of either A' or B'. Thus" 

(1 - E2)[  B ' -  A'] = X 2 Y. (A9) 

y~ and Y2 can be calculated like x3 and x4 and it is 
shown that 

Y~ + Y2 = X 3  + X 4  

s o 

=2E2(1-E2) ~" I d~:A(~:, Sh). 
o 

Similarly 

y~ + y~ = x~ + x~ 
s h 

= 2 E 2 ( 1 - E 2 ) z J d r / B ( s o ,  r/) (AIO) 
0 

s h 

y3=2E2(1-E2)~ " ~ dr/A(so, r/) 
0 

s O 

y'3=2E2(1-E2)r J d~B(~,Sh). 
0 

(A l l )  

We now calculate Y4 and y~. 

s o s h s h 

y4= ( l - E 2 )  z )" d~:'I dr/ I d~?' g(Sh--~?)g(sh--rl') 
0 0 0 

x (6D*(~', .q')3Dp(~f, n)>- 

Again we make the assumption 

g(sh-~?')~-g(sh-rl)g(n-n') for n> n' 

and we get 
s o 

y4= 2 ( 1 -  E2)2"r2 ~ d~:A'(s c, Sh) 
0 

and 
s h 

y ~ = 2 ( 1 -  E2)2~'2 ~ dr/B'(so, r/). (A12) 
0 

It has been shown in (I) that Y5 and y~ are negli- 
gible. The argument, which was developed for E + 0, 
holds for any value of E. 

(a) We finally consider Y6 and y~" 

s h 

y6= 2 ( 1 -  E2)2~'~" 2 ~ dr/l~)(So, "q) 
0 

s h 

+ 2 ( 1 -  E2)2r2 ~ dr/A'(so, 'r/) 
0 

$o 

y~= 2(1 - E2)2TI"2 ~ ds c l~,(s c, Sh) 
0 

s 0 

+2(1-E2)2r2  I d~B'(~,Sh) 
0 

(A13) 

Equations (A13) are obtained in the same way as 
(A7). 

(b) We summarize the previous results and obtain 

s o 

X-2{B'-A'}= 2E2r ~ d~: [ A -  B](~:, Sh) 
0 

s h 

+ 2E2-r ~ d r / [ A -  B](so, r/) 
0 

s O 

+ 2 ( 1  -- E2)~'2 I d~: (A'-B')(~, Sh) 
0 

Sh 

+ 2 ( 1 - E 2 ) r 2  ~ d'q (A'-B')(So, rl) 
0 

+2(1 - E2) ~'~'u 

x { !  dr//~(So, 
So } 

r / ) -  ~ dE I~, (~, Sh) • 
0 

(A14) 

We thank D. Feil for a careful reading of the 
manuscript and for helpful discussions. 
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Abstract 

The various geometries of area-detector diffractometers 
and cameras are best described using a coordinate-free 
abstract operator notation. Modem methods of geome- 
try, including especially the combined application of vec- 
tors and covectors, are used; they confer the simultane- 
ous advantages of simplifying, virtualizing and unifying 
the analysis, which becomes applicable to all methods 
and machines. A second, and most valuable, prize aris- 
ing from this approach, itself a major theme of this pa- 
per, is the complete avoidance of computationally ex- 
pensive and analytically inconvenient trigonometric func- 
tions in area diffractometry. The very few occasions when 
they are unavoidable have already been discussed fully 
in a previous paper on goniometry. Basic diffraction ge- 
ometry is presented first, giving all the equations neces- 
sary to identify diffraction spots and to calculate a use- 
ful generalization of the Lorentz factor. These are a for- 
malized and extended version of those presented to the 
EEC Cooperative Workshop on Position-Sensitive Detec- 
tor Software held at LURE in Paris in 1986. Then, various 
previously unpublished formulae describing beam diver- 
gence, dispersion and polarization, crystal mosaicity and 
angular widths of diffraction spots are presented. Finally, 
three specific calculations appropriate to the use of an area 
diffractometer are given, including a calculation of win- 
dow sizes, a model of the backstop shadow and a method 
of surveying a diffraction pattern for assessment and pre- 
alignment. 

* This paper is a sequel to Modem Equations of Diffractometry. Gon- 
iometry [Acta Cryst. (1990), A46, 321-343] in which it is referred to as 
Thomas (1990b). The second author with M. R. Hestenes in the refer- 
ence list to that paper (p. 342) should have been E. Stiefel. 

t Present address: European Molecular Biology Laboratory, Meyer- 
hofstrasse 1, Postfach 10.2209, W--6900 Heidelberg, Germany. 

1. Introduction - unification through generalization 

From the earliest days of crystallographic diffraction stud- 
ies, the analysis of diffraction geometry has been heavily 
reliant on the use of trigonometric functions and of radical 
forms, particularly the square root. This was because, at a 
time when electronic computers were not available, roots 
and trigonometric functions could conveniently be read 
from tables, whereas equivalent vectorial (i.e. matrix) cal- 
culations would have been intolerably tedious. With the 
advent of digital computers, particularly in demanding 
'real-time' applications, radical and trigonometric calcu- 
lations became relatively less favourable when compared 
with component calculations using vectors and matrices, 

which are the natural variables for 'area detectors'.~: Al- 
though cameras existed and were in common use, they 
were not perceived as area detectors until their electronic 
successors appeared. Thus, it did not become apparent un- 
til fairly recently that any theory of area diffractometry 
based on vectorial calculations could exist in contradis- 
tinction to that of single-counter diffractometry, where the 
use of angular variables is entirely natural. 

It was not until 1986 at the EEC Cooperative Work- 
shop on Position-Sensitive Detectors in Paris that it be- 
came apparent that the simple vectorial equations long 
used in the Cambridge software package for the Enraf-  
Nonius FAST system were not, in fact, common knowl- 
edge. I was thus encouraged to make them more widely 
known, and hope that this paper achieves that. At the same 
workshop, Dr G6rard Bricogne used the term 'virtualized' 

The misnomer "area detector" (if. 'linear detector', 'single counter') 
is the accepted name for a 2D imaging detector for recording diffraction 
patterns. It usually also bears the connotation of a reusable electronically 
readable device, which in some way justifies the need for a special name: 
in the present paper the term has a more general meaning and is held to 
include any detector capable of measuring a 2D image, including film. 
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